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The notion of Fock theory is introduced in the framework of quantum logics, which are
here orthomodular atomic lattices satisfying the covering property. Itis shown that there
are some fundamental facts concerning particles, which may be successfully discussed
in this general context. One of these facts is to establish the theoretical conditions
for considering particles as sharply defined entities. The other refers to the theoretical
circumstances, which almost impose to consider that some particles have a structure,
meaning they are composed from other particles. This last problem is strongly related
with the conservative time evolutions.
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1. INTRODUCTION

In what follows we will prefer to use the term of physical theory instead of
guantum logic. In order to avoid any confusion we give below the list of principal
mathematical terms used in our text. For physical meaning of some terms or
physical interpretations of results italics will be used.

By a physical theory,l(, <, 1) whereL is a nonempty sets< is a partial
order relation, and_ is an orthocomplementation dnis meant an orthomodular
atomic lattice having the covering property. Remember that a ldttiseatomic
if under any element of there is an atom, i.e. a minimal elementlof The set
of all atoms ofL will be denoted byQ2(L). The latticeL satisfies the covering
property if, givera € L, p € Q(L), there is no element betwearandp v a. The
notationsa v b anda A b denote the lowest upper bound (the join) and the greatest
lower bound (the meet) @ andb, respectively. We say that the elemeatb < L
commute/are compatible if the following equality holds= (a A b) v (a A bt),
whereb! denotes the orthocomplementlafin this situation we writed, b)C.

If two elementsa, b € L have the properta < b*, then we say that they are
orthogonal and writa 1 b or (a, b) L. An orthomodular lattice having the property
that all its elements commute is called a Boolean algdycem the physical point
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of view the elements of a physical theory represent “yes-no” experiments or simply
tests. When two elements of L commute we say that their corresponding tests are
empirically compatible, which means that there exists an experimental procedure
permitting to measure them simultaneously.

Any subset ofL which is itself a lattice with the order and orthocomplemen-
tation inherited froni, is called an orthosublattice bf It is easy to prove that any
physical theory may be represented as the union of a family of its orthosublattices,
which are atomic Boolean algebras. It is interesting to mention that physical theo-
ries may have orthosublattices that are Boolean algebras having no atoms. Now we
can define the notion of state of a physical theory. A state @ma mapping from
L to [0, 1], which, restricted to any Boolean orthosublatticé a$ a probability.

A state describes a mode of preparation (of a system for instafizejch, 1968).

Then it becomes obvious that the state corresponds, roughly speaking, to the fre-
guency of obtaining the answer “yes” for any test in the experimental conditions
corresponding to that mode of preparatidn what follows we will assume that

for any atom there exists one and only one state taking the value 1 on that atom and
a state cannot take the value 1 on two different atoms. This statement is supposed
to be true for all theories used below. A state taking the value 1 on an atom is
said to be pure. Since it is obvious that any pure state is completely defined by
an atom, we introduce the notatiép, u € Q(L), for the state with the property

Su(u) = 1.

It is well known that the observables, i.e. those objects, which correspond in
a given theory to physical quantities, are in the case of the theanprphisms
defined on the Borel algebra of subsets of a metric space and taking values in
(Piron, 1976). The metric space in discussion represents the possible values of the
physical quantity of a given observable and is usually a subsetho€artesian
powerR" of the seR of real numbers. Since in what follows we are not interested
in values of the observables, any observable will be defined as a Boolean algebra in
L. This definition is supported by the fact that the images of the above-mentioned
morphisms are Boolean algebras. Of course, itis hot possible to reproduce the mor-
phism using its image only, but in our case this will be not necessary. The result
of the measurement of an observaBlén a statep may be defined as the proba-
bility p:B — [0, 1] Obviously, if the morphisnm defining B is known, then the
mappingp o mis a probability whose interpretation is obvious.

Finally we introduce the notion of time evolution. A time evolution or simply
an evolution is a family = {\4;t € R} of automorphisms ok. In what follows
we will write simplyV = (V). Automorphism ofL is any bijective mapping :

L — L having the properties (va) = v f(a), f(at) = f(a)*. An evolution

(\t) describes the change in time of states as follows: given agtatmsidered at
the moment = 0, the state at the momenivill be §, o V;, where ©” denotes the
composition of functions. Sinc¥, is an automorphism, it may be easily proved
that 0oV, is a pure state. A simple but important property of automorphisms,
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which will be used later, i$,0V = Sv-14s whereV is an automorphism and
an atom ofL. Indeed, sincé,oV is a pure state, there exists a unique atom
such thaB, oV = §,. Then we havé,(V (v)) = é,(v) = 1. From the properties of
pure states in the theotty we get immediatelys = V(v) or v = V~(u) and the
equality is proved.

The structure of the paper is the following. The second paragraph contains the
definition and some general properties of Fock theorids ifihe third paragraph,
which is the core of the paper studies Fock theories with time evolutions. The last
section is devoted to comments of the obtained results and of their connections
with the Hilbert-space formalism.

2. FOCK THEORIES

Let us considet an orthomodular lattice having all properties of physical
theories mentioned in Introduction. It will be assumed thi also complete (any
family of its elements has a join) although this property is not always necessary.
N andN" will denote the set of natural numbers andrith Cartesian power, re-
spectively. The elements b, which are of the formlg, . . ., ky), will be denoted
occasionally by small Greek letters. Let us consider aSset{s;, ..., s} of n
species of particles. Any elemen (..., ky) = « is a possible composition in
particles of the species, ..., s, respectively. It is assumed that for any com-
position there exists a test In, denoted byc(ky, .. ., ky) or ¢(«), which will be
called counting test corresponding to that compositiiois.obvious that, from the
physical point of view, a counting test is a “yes—no” experiment, that permits one
to establish if in an arbitrarily given state there is the composition corresponding
to that test For the seSwe may define a Fock theory as follows.

Definition 2.1. A Fock theory for the sef is a set of counting tests(S) =
{c(a); « € N"} having the following properties:

@) ve(w) =1,

(b) the tesi/(0.. . . 0), called the vacuum of the theoR(S), is orthogonal to
any other test of the theory.

We might ask also another property for Fock theordes: 8 = c(a) A c(8) = 0.

The interpretation of this property results from the following reasonir(g) e

c(B) # 0= 3Ju e Q(L),u < c(a), u < c(B) = du(c(a)) = du(c(B)) =1, which

means that in a state we have with probabilitjwo different compositions. Such

a conclusion is not at all physically plausibl@/e did not ask this property in

Definition 1 since it will be not necessary to use it in all cases discussed bellow.
For any Fock theory= (S) we introduce a sefes(S) of so-called admissible

states of the theory. That means that we do not aceetori any é, as a pos-

sible state for particles described by the thebry5). The setF.(S) = {8,;u €
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Q(L), u < c(a), o € N"} will be assumed included ifrs(S) if we do not have
arguments for rejecting some of them.

Definition 2.2. A Fock theory is called particle theory if any admissible state is
different from zero for only one of its elements. It is said to be orthogonal if its
elements are mutually orthogonal.

We will prove now an important property of particle Fock theories.

Proposition 2.1. Let F(S) be a particle Fock theory. Then(B) is orthogonal
and K(S) = F(9).

Proof: Letustakeas € Q(L), u < c(a). We haveS,(c(a)) = 1. Then, sincé=(S)

is a particle theory, forang(8) # c(«), 8u(c(B)) = 0. Itresultsiru < ¢(8)*, since

for anya € L there exists a unique atom< a such that,(a) = su(v), (Ivanov,
1987). Now it is easy to prove thafx) L c(B), VB # «a and the first part of the
proposition is proved. For proving the second part, let us consides tkat.(S).
Therefore, since the elements of the theory are mutually orthogonal, we may write
Su(ve(e)) = Zpdu(c(e)) = 1. SinceVe, u is not underc(w), Su(c(e)) # 1, Va.

we' get3a # B, du(c(w)) # 0,38u(c(B)) # 0 and the proposition is completely
proved. O

Suppose now thdE(S) is not orthogonal. Then we have two possible situa-
tions. One of them corresponds to the case when the counting tests are mutually
compatible, but there are pairs of tesi;), ¢(8), such that(«) A c(8) # 0. The
other assumes existence of pairs of tests, which are not compatible. In both cases
the following proposition is true.

Proposition 2.2. If F(S) is not orthogonal, then there exists a state, which does
not vanish on at least two different counting tests.

Proof: Suppose&(a), c(B8) are not orthogonal counting tests. If we assume that
for any atomu < c(«), su(c(B)) = 0, then it results immediatelg(c) L c(B),
which is not possible.

It is clear that the nontrivial situation in the case of nonorthogonal theories is
that in whichc(a) A c(8) = 0 for all pairs of counting test&rom physical point
of view particle theories describe “sharply defined particles.” IndeBdyposi-
tion 1 expresses the fact that in any admissible state we find certainly only one
composition in particles. On the other hand if the particles are described by a
nonorthogonal Fock theory, then we may affirm that the particles in question are
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not sharply defined entities, at least in the framework of that theory. That is be-
cause we can find states in which different compositions in particles have nonzero
probabilities. 0O

We end this paragraph with an interesting remark concerning orthogonal the-
ories. LetF (S) = {c(ky, ..., Kn); (ki, ..., kn) € N"} be an orthogonal theory. By
using counting tests dF (S), we can define for any specigsa Boolean alge-
bra, which is in fact an observable corresponding to experimental procedures for
measuring the number of particles of the spesie#t is N; = {{;ik c(ak); k € N},
wherea;, = (Ki, ..., ki—1, K, Kit1, ..., Ka). Itis obvious thatNy, ..., N, are mu-
tually compatible Boolean algebra&om the physical point of view this means
that in our theory the number of particles from each species may be determined
separately. It is also clear that the composition of any state may be determined by
measuring simultaneously the number of particles of all species. When the theory,
which describes the species from S is not orthogonal it is not possible to define
observables for the number of particles of different species. Nevertheless, it is
justified to talk about tests, which measure the composition of states in particles,
corresponding to measurement procedures whose results may be interpreted as-
suming that particles in discussion are present in the system. It is important to
observe that the impossibility to define observables for the number of particles in
theories, which are not orthogonal is in accord to the fact that in such theories the
particles are not sharply defined.

3. FOCK THEORIES AND TIME EVOLUTIONS

In this section we intend to discuss some problems concerning the possibil-
ity of time evolutions to predict change of particles described by different Fock
theories. We will have in view only conservative evolutions, i.e. evolutions having
a Hamiltonian. The notion of Hamiltonian in the context of theories will defined
below.

Definition 3.3. LetV = (V;) be an evolution in the theolly. We say that € L
is invariant undel and writeV(a) = aif Vi(a) = aforallte R.IfGC Lisa
subset oL, we write @, G)C if (a, g)C for allg € G.

It is easy to verify that the set of all invariant undérelements ol, which will
be denoted by, is an orthomodular sublattice af To prove this it is sufficient
to apply the properties of automorphisms.

Definition 3.4. It is said that the evolutioV has a Hamiltonian if there exists
a Boolean algebréd € L having the propertyH):V(a) = a < (a, H)C. Such
an evolution is called conservative if it is also a one-parameter group.
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It is obvious that the set of all Boolean algebras having the propEi) thay

be empty or may have more than one element. The following simple proposition
gives us the possibility to define a Hamiltonian for a given evolution when the just
mentioned set is not empty.

Proposition 3.3. If the evolutionV has at least one Boolean algebra with the
property (EH), then there exists a greatest Boolean algebra with this property. It
will be called the Hamiltonian o¥/.

Proof: Let H andH’ be two Boolean algebras having the propeB) with
respect to the evolutiol. If a € H, thenV(a) = a, which meansg, H')C. It
results that the elements of the union of all Boolean algebras with the proRétty (

are mutually compatible. Consequently, the orthomodular sublattice generated by
thisunionis a Boolean algebra, which will be denotedHyylt remains to show that

H, has the propertygH). But this fact results immediately since all elementsipf

are joins and meets of elements of its generating set (Sikorski, TBi6&Boolean
algebra H, is called Hamiltonian since it is strictly related with a conservative
evolution, offering a criterion for finding invariant observables from the set of all
possible observables of the theory. It is obvious that invariant observables must
correspond to the so-called constants of motion. O

It is obvious that for any/, evolution with Hamiltonian, we havel, C L,.
In general the following statement is true.

Proposition 3.4. LetV be an evolution with Hamiltonian. Then, = H, if and
only if L is a Boolean algebra.

Proof: Takea € L,. Thenwe haveq, H,)C and let us denote b$, the Boolean
algebra generated by the $at N H,. We want to prove thaB, has the property
(EH). If an elemenb is compatible withB,, then it is also compatible withl,, so
thatb € L. Conversely, suppose tHat L. Then, sincd., is a Boolean algebra,
(a, b)C. We have also, H,)C, so thatlp, By)C is true. Since the Hamiltonian is
the greatest Boolean algebra with tidH) propertyb is en element oH, and the
proposition is completely proved. O

Itisimportantto observe that, if the lattice of all invariant undes a Boolean
algebra, it does not result that it has Hamiltonian. That is because &pm)C
it does not result necessarily thatis invariant undeV. In general, it is very
difficult, if not impossible, to establish in this quite general framework criterions
for deciding if an evolution has or not Hamiltonian. Consequently, in the sequel
we will restrict ourselves to those physical theories, which have the property that
any conservative evolution is continugigge Comments). As is usually done, an
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evolutionV = (V;) is said to be continuous if for any stgéeand for any tesh € L
the functiont — p(V;(a)) is continuous.
We begin now to study time evolutions of Fock theories.

Definition 3.5.

(&) The evolutionV is said to be admissible for the Fock thedfyS) if
peFs(S) — poVeR(Sforallt e R.

(b) If c(a), o € N" denote the counting tests of the the®r(S), then for any
speciess and any state we define a composition function as follows:
Cip(t) = Zakia P(ViC(t)).

(c) The evolutiorV is called reactive if at least one of its composition func-
tions is not constant.

We will prove now a very important result concerning particle Fock theories.

Proposition 3.5. Particle Fock theories have not admissible conservative reac-
tive evolutions.

Proof: Let F(S) be a Fock theory whose counting tests and composition func-
tions are denoted as in Definition 5(b). Let us consider an admissible pure state
8u, U € (L) and the corresponding composition functi@s, (t) = ki dy
(Vi(c(@))) defined with respect to the evolutioh. Suppose that the function

Ci s, (t) = C(t) is not constant. Then there are two alternatives:

(1) there existg > 0 such that for any’ > ¢ we can findt” € (z, t’) with

the property C(t") # C(z);
(2) for any t > 0O there existd’ > t such thatC(t”) = C(z) for all t” €

(z, ).

We will show that in both (1) and (2) cas¥sis not continuous. Since (2) is the
negation of (1) the proposition will be proved. We prove first that if (1) is true, then
V is not continuous. We show first theét’ > 7, 3t € (, t')dy,, (V4 (u)) = 0. In-
deed, if this is not true, we would have for 8k (z, t'), V. (u), V;i(u) < c(«). That

is because the pure states corresponding to the a¥ou}, V;(u) are admissible

in a particle theory, so that if they are not orthogonal, then they are under the same
counting test. But in this case we can write the following sequence of equalities:
du(Vic(e)) = 81y (C(@)) = dyr)(c(e)) = du(V:C(e)). This means that the
composition functiorC; s, (t) is constant on the intervat[t’), which contradicts

the hypothesis. It results that we may find a sequence of real nutpbers such

that for allk dv, ()(V-(u)) = 0= au(vt;l(vr(u))) and the limit of this sequence is
obviously zero. On the other hand, if the evolution is supposed to be continuous,
then we have obviously ligo. . 8u(Vy 1(V:(U))) = 8u(V; (V- (1)) = du(u) = 1,
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contradiction. It results that the evolution is not continuous. Suppose now that (2)
is true. Then we can observe that there exists a denumerable family of intervals
(0,t1), [t1, t2), ..., [th—1, tn), . . . whose union is [0Opo0) and such that the compo-
sition function in question is constant on each of them. Since the composition
function is not constant, there exigt 1, tn, Ci s, (th—1) # Ci s, (tn). Then we take

a sequence — tyin[t,_1, t,) and repeat practically the proof from the point (1).
The proposition is completely proved. O

Proposition 5 has a simple but important consequence.

Proposition 3.6. Any continuous admissible for a particle Fock theory evolution
leaves invariant all counting tests of that theory.

Proof. InProposition 5 ithas been proved in fact that, if there exists composition
function, which is not constant, then the evolution is not continuous. This means
that, if the admissible evolutiow is continuous, then all composition functions
are constant. Let us consider an atom c(«) and the composition functions
associated to the pure state definedily s, (t) = X,kiqdv,, (c(a)). Observe that

the functiont — 4y, (c(a)) has as only possible values 0 and 1. Consequently, we
may writeC; 5,(0) = kiy. If Vt(u) is not under(x), thenG; s, (t) = O. Further, ifu

is not under vacuum, then we may findli < n, ki, # 0, so that the correspond-
ing composition function is not constant. It results that all counting tests, which
differ from vacuum, are invariant und®f. But, in this case the vacuum itself is
invariant. O

Before going further, it is useful to point out that to any given Fock theory
we may attach several admissible evolutions. That is because our definition of
admissibility is a weak enough condition. For our purpose this definition is suf-
ficient since our discussion is quite general and it is obvious that any derivation
from some other conditions imposed by specific physical circumstances evolu-
tion must transform the set of admissible states into itself. Remember also that in
what follows only conservative evolutions, i.e. evolutions with Hamiltonian will be
considered.

Let us consider agail an evolution in the theory and its Hamiltonian,
which will be denoted for the moment hiyt. If a £ 0 is an element of., we
introduce the following sets, which will be used below. Theylaye= {b € L; b <
a}, Ha = {a A h;h € H} andV,, which is the restriction of all elements Wfto
La. We will prove the following proposition.

Proposition 3.7. Givenanevolutio¥ in L and H its Hamiltonian, the following
two assertions are true.
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(a) Lais an orthomodular lattice with the order inherited from L.
(b) Ha is the Hamiltonian ofV, in L4 if and only if(a, H)C.

Proof: (a) The smallest and the greatest elements pére respectively 0 and
a. Itisobviousthab,d € Ly = b A d,bvd e L,. Further, ifb € L, then from
the orthomodularity of. we havea = b v (a A b') and it becomes clear that the
orthocomplement o in L, is b2 = a A bt. It is then easy to verify thatt',”

is orthocomplementation oh, andL, is orthomodular. For proving (b), let us
takeb € Ly, (b, Hy)C. Ifh € H, then fromh = (a A h) v (@' A h) we getimme-
diately b, h)C, which impliesV,(b) = V(b) = b. If V(b) = b, then p, H)C and
since p, a)C,we geth, a A h)Cforallh € H. Itresults thaH, has theEH) prop-
erty, which confirms that it is a Hamiltonian. Conversely, supgésis a Hamilto-
nian. TherV(a A h) =a A hforallh € H. Since we hava = v (h A a), one
obtains immediately/ (a) = a and finally @, H)C. The proposition is completely
proved. O

The HamiltonianH, may be called the reduction &of the HamiltonianH .
Let us consider nowr (S) a Fock theory an&¥ one of its admissible evolutions.
If all counting testsc(x) are invariant unde¥, then for anya there exists the
reductionH, of the Hamiltonian oV to c(«). If F(S) is a particle theory, then
it is clear that the pairK(S),V) may be replaced by the sffi,, H,); « € N"},
wherelL, = L¢). Each of the pairs of this set represents a theory for a fixed
number of particles from each species with the evolution corresponding to the
Hamiltonian H,,. A pair like (F(S),V), i.e. having its properties will be called
many particle theorylt is not difficult to understand that a many particle the-
ory describes systems of particles, which are stable in some specific conservative
conditions usually considered in concrete form of Hamiltonians. Moreover, one
of the components of a many particle theory being a particle Fock theory, we
know that there does not exist a conservative evolution able to consider change in
time of the composition of systems. It is also important to remember that particle
Fock theories describe sharply defined particles. On the other hand we know from
experimental facts that there exist systems constituted from particles—like atoms
and molecules—whose composition may change in conservative conditions. For
describing processes in conservative conditions occurring in such systems, we
need Fock theories, which might be orthogonal theories with an extended set of
admissible states if compared with particle theories or theories, which are not
orthogonal. The main appearing problem is how the good from physical point of
view theories of these categories may be recognized or eventually constructed.
Probably the most natural hypothesis is to assume that every system of parti-
cles is constituted in fact from stable in those conditions particles, which may
produce composed nonsharply defined particles. The evolution of systems with
composed particles inside will be generated by the evolution of the considered
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stable particles. We end the paragraph with the mathematical transcription of these
considerations.

Let us consider the Fock theoriE$S) and ¢(E), V) in the physical theories
L respectivelyr, where ¢(E), V) is a many particle theory. Givehan evolution
in L, we say thatk(S),V) derives from §(E), V,) if there existsf : L — A an
injective morphism of orthomodular lattices such tfigV(a)) = V,(f(a)). This
definition has a quite clear meaning: E represnts the set of species of stable
particles from which the particles of the species belonging to S are composed. The
evolutionV, of stable particles is that, which generates the evolution of composed
particles. Usually the evolutions for stable particles may be found taking into
account basic physical considerations and some empirical facts, so that we get
a good criterion for selecting, at least in principle, the evolutions for particles,
which are not sharply defined.

4. COMMENTS

The principal aim of the present work is to discuss the so-called Fock theories,
which are methematical structures we introduced for studying systems containing
particles whose number varies in time. These particles may be structureless or
composed from other particles. All problems are discussed in the framework of
quantum logics, called in our paper physical theories. The mathematical structure
of quantum logic has been chosen since, in our opinion, it has one of the best
physical interpretations if compared with other mathematical structures also called
physical theories.

Two main conclusions emerge from our work. Both of them refer to the
opportunity to consider the general mathematical structure of Fock space. The first
of them is directly related to the possibility offered by Fock spaces to give a precise
mathematical possibility for distinguishing between sharply defined particles and
other particles whose existence is imposed by experimental facts, but they do not
behave always as sharply defined entities. Such a distinction becomes possible in
quite simple terms because Fock theories are thought to describe, each of them,
all systems constituted from different number of particles of an arbitrarily given
set of species. It has been seen in Paragraph 2 that distinction between the two
mentioned types of particles may be done only in terms of compositions in particles
of admissible states. The second conclusion is connected with conservative time
evolutions of Fock theories. The results obtained from a careful enough analysis
of such evolutions are quite interesting. First of all we find out that sharply defined
particles do not change their number in conservative conditions. On the other hand,
the other mentioned type of particles may change their number in conservative
conditions and the most probable cause of this phenomenon is that they are in fact
composed from other particles.
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Finally some technical comments related with the evolutions as mathematical
objects in our work. The fact that they appear as sets of automorphisms results
since their elements must be symmetries of physical theories, (lvanov, 1995).
We had to show how to prescribe to any conservative evolution a Hamiltonian
defined strictly in the mathematical framework of quantum logics. The definition,
which has been proposed in Paragraph 3 is inspired by two fundamental results
from Hilbert-space theory. They are spectral theorem for self-adjoint and unitary
operators and Stone’s theorem concerning unitary evolutions, (Stone, 1932). We
have to point out that we used the continuity of evolutions only for proving the
important Proposition 5. Unfortunately for the continuity of evolutions we could
not find a satisfactory physical interpretation in terms of quantum logic system
of notions. We only considered the fact that even in the Hilbert space formalism
a sort of continuity for conservative evolutions must be required. On the other
hand our “purely algebraic” definition permits to obtain a series of results, which
confirm that the lattice-theoretical Hamiltonian has some characteristic properties
of the usual Hilbert-space Hamiltonians. In this paper we derived and used only
few lattice-theoretical results, those, which were necessary for our purpose. It
seems that a more extended study concerning conservative evolutions and their
Hamiltonians in this framework could be quite interesting.
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