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The notion of Fock theory is introduced in the framework of quantum logics, which are
here orthomodular atomic lattices satisfying the covering property. It is shown that there
are some fundamental facts concerning particles, which may be successfully discussed
in this general context. One of these facts is to establish the theoretical conditions
for considering particles as sharply defined entities. The other refers to the theoretical
circumstances, which almost impose to consider that some particles have a structure,
meaning they are composed from other particles. This last problem is strongly related
with the conservative time evolutions.
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1. INTRODUCTION

In what follows we will prefer to use the term of physical theory instead of
quantum logic. In order to avoid any confusion we give below the list of principal
mathematical terms used in our text. For physical meaning of some terms or
physical interpretations of results italics will be used.

By a physical theory, (L ,≤,⊥) whereL is a nonempty set,≤ is a partial
order relation, and⊥ is an orthocomplementation onL is meant an orthomodular
atomic lattice having the covering property. Remember that a latticeL is atomic
if under any element ofL there is an atom, i.e. a minimal element ofL. The set
of all atoms ofL will be denoted byÄ(L). The latticeL satisfies the covering
property if, givena ∈ L, p ∈ Ä(L), there is no element betweena andp∨ a. The
notationsa ∨ b anda ∧ b denote the lowest upper bound (the join) and the greatest
lower bound (the meet) ofa andb, respectively. We say that the elementsa, b ∈ L
commute/are compatible if the following equality holds:a = (a ∧ b) ∨ (a ∧ b⊥),
whereb⊥ denotes the orthocomplement ofb. In this situation we write (a, b)C.
If two elementsa, b ∈ L have the propertya ≤ b⊥, then we say that they are
orthogonal and writea⊥ bor (a, b)⊥. An orthomodular lattice having the property
that all its elements commute is called a Boolean algebra.From the physical point
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of view the elements of a physical theory represent “yes-no” experiments or simply
tests. When two elements of L commute we say that their corresponding tests are
empirically compatible, which means that there exists an experimental procedure
permitting to measure them simultaneously.

Any subset ofL which is itself a lattice with the order and orthocomplemen-
tation inherited fromL, is called an orthosublattice ofL. It is easy to prove that any
physical theory may be represented as the union of a family of its orthosublattices,
which are atomic Boolean algebras. It is interesting to mention that physical theo-
ries may have orthosublattices that are Boolean algebras having no atoms. Now we
can define the notion of state of a physical theory. A state onL is a mapping from
L to [0, 1], which, restricted to any Boolean orthosublattice ofL is a probability.
A state describes a mode of preparation (of a system for instance), (Jauch, 1968).
Then it becomes obvious that the state corresponds, roughly speaking, to the fre-
quency of obtaining the answer “yes” for any test in the experimental conditions
corresponding to that mode of preparation. In what follows we will assume that
for any atom there exists one and only one state taking the value 1 on that atom and
a state cannot take the value 1 on two different atoms. This statement is supposed
to be true for all theories used below. A state taking the value 1 on an atom is
said to be pure. Since it is obvious that any pure state is completely defined by
an atom, we introduce the notationδu, u ∈ Ä(L), for the state with the property
δu(u) = 1.

It is well known that the observables, i.e. those objects, which correspond in
a given theory to physical quantities, are in the case of the theoryL morphisms
defined on the Borel algebra of subsets of a metric space and taking values inL
(Piron, 1976). The metric space in discussion represents the possible values of the
physical quantity of a given observable and is usually a subset ofnth Cartesian
powerRn of the setR of real numbers. Since in what follows we are not interested
in values of the observables, any observable will be defined as a Boolean algebra in
L. This definition is supported by the fact that the images of the above-mentioned
morphisms are Boolean algebras. Of course, it is not possible to reproduce the mor-
phism using its image only, but in our case this will be not necessary. The result
of the measurement of an observableB in a statep may be defined as the proba-
bility p:B→ [0, 1] Obviously, if the morphismm definingB is known, then the
mappingp ◦m is a probability whose interpretation is obvious.

Finally we introduce the notion of time evolution. A time evolution or simply
an evolution is a familyV = {Vt ; t ∈ R} of automorphisms ofL. In what follows
we will write simply V = (Vt ). Automorphism ofL is any bijective mappingf :
L → L having the propertiesf (∨

i
ai ) = ∨

i
f (ai ), f (a⊥) = f (a)⊥. An evolution

(Vt ) describes the change in time of states as follows: given a stateδu considered at
the momentt = 0, the state at the momentt will be δu ◦ Vt , where “◦” denotes the
composition of functions. SinceVt is an automorphism, it may be easily proved
that δu◦Vt is a pure state. A simple but important property of automorphisms,
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which will be used later, isδu◦V = δv−1
(u) , whereV is an automorphism andu

an atom ofL. Indeed, sinceδu◦V is a pure state, there exists a unique atomv
such thatδu◦V = δv. Then we haveδu(V(v)) = δv(v) = 1. From the properties of
pure states in the theoryL we get immediatelyu = V(v) or v = V−1(u) and the
equality is proved.

The structure of the paper is the following. The second paragraph contains the
definition and some general properties of Fock theories inL. The third paragraph,
which is the core of the paper studies Fock theories with time evolutions. The last
section is devoted to comments of the obtained results and of their connections
with the Hilbert-space formalism.

2. FOCK THEORIES

Let us considerL an orthomodular lattice having all properties of physical
theories mentioned in Introduction. It will be assumed thatL is also complete (any
family of its elements has a join) although this property is not always necessary.
N andNn will denote the set of natural numbers and itsnth Cartesian power, re-
spectively. The elements ofNn, which are of the form (k1, . . . , kn), will be denoted
occasionally by small Greek letters. Let us consider a setS= {s1, . . . , sn} of n
species of particles. Any element (k1, . . . , kn) = α is a possible composition in
particles of the speciess1, . . . , sn respectively. It is assumed that for any com-
position there exists a test inL, denoted byc(k1, . . . , kn) or c(α), which will be
called counting test corresponding to that composition.It is obvious that, from the
physical point of view, a counting test is a “yes–no” experiment, that permits one
to establish if in an arbitrarily given state there is the composition corresponding
to that test. For the setSwe may define a Fock theory as follows.

Definition 2.1. A Fock theory for the setS is a set of counting testsF(S) =
{c(α);α ∈ Nn} having the following properties:

(a) ∨
α

c(α) = 1;

(b) the testV(0,. . .0), called the vacuum of the theoryF(S), is orthogonal to
any other test of the theory.

We might ask also another property for Fock theories:α 6= β ⇒ c(α) ∧ c(β) = 0.
The interpretation of this property results from the following reasoning: c(α) ∧
c(β) 6= 0⇒ ∃u ∈ Ä(L), u ≤ c(α), u ≤ c(β)⇒ δu(c(α)) = δu(c(β)) = 1, which
means that in a state we have with probability1 two different compositions. Such
a conclusion is not at all physically plausible. We did not ask this property in
Definition 1 since it will be not necessary to use it in all cases discussed bellow.

For any Fock theoryF(S) we introduce a setFs(S) of so-called admissible
states of the theory. That means that we do not accepta priori any δu as a pos-
sible state for particles described by the theoryF(S). The setFc(S) = {δu; u ∈
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Ä(L), u ≤ c(α), α ∈ Nn} will be assumed included inFs(S) if we do not have
arguments for rejecting some of them.

Definition 2.2. A Fock theory is called particle theory if any admissible state is
different from zero for only one of its elements. It is said to be orthogonal if its
elements are mutually orthogonal.

We will prove now an important property of particle Fock theories.

Proposition 2.1. Let F(S) be a particle Fock theory. Then F(S) is orthogonal
and Fs(S) = Fc(S).

Proof: Let us takeu ∈ Ä(L), u ≤ c(α). We haveδu(c(α)) = 1. Then, sinceF(S)
is a particle theory, for anyc(β) 6= c(α), δu(c(β)) = 0. It results inu ≤ c(β)⊥, since
for anya ∈ L there exists a unique atomv ≤ a such thatδu(a) = δu(v), (Ivanov,
1987). Now it is easy to prove thatc(α)⊥ c(β), ∀β 6= α and the first part of the
proposition is proved. For proving the second part, let us consider thatδu /∈ Fc(S).
Therefore, since the elements of the theory are mutually orthogonal, we may write
δu(∨

α
c(α)) = 6αδu(c(α)) = 1. Since∀α, u is not underc(α), δu(c(α)) 6= 1,∀α.

We get ∃α 6= β, δu(c(α)) 6= 0, δu(c(β)) 6= 0 and the proposition is completely
proved. ¤

Suppose now thatF(S) is not orthogonal. Then we have two possible situa-
tions. One of them corresponds to the case when the counting tests are mutually
compatible, but there are pairs of tests,c(α), c(β), such thatc(α) ∧ c(β) 6= 0. The
other assumes existence of pairs of tests, which are not compatible. In both cases
the following proposition is true.

Proposition 2.2. If F (S) is not orthogonal, then there exists a state, which does
not vanish on at least two different counting tests.

Proof: Supposec(α), c(β) are not orthogonal counting tests. If we assume that
for any atomu ≤ c(α), δu(c(β)) = 0, then it results immediatelyc(α)⊥ c(β),
which is not possible.

It is clear that the nontrivial situation in the case of nonorthogonal theories is
that in whichc(α) ∧ c(β) = 0 for all pairs of counting tests.From physical point
of view particle theories describe “sharply defined particles.” Indeed,Proposi-
tion 1 expresses the fact that in any admissible state we find certainly only one
composition in particles. On the other hand if the particles are described by a
nonorthogonal Fock theory, then we may affirm that the particles in question are
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not sharply defined entities, at least in the framework of that theory. That is be-
cause we can find states in which different compositions in particles have nonzero
probabilities. ¤

We end this paragraph with an interesting remark concerning orthogonal the-
ories. LetF(S) = {c(k1, . . . , kn); (k1, . . . , kn) ∈ Nn} be an orthogonal theory. By
using counting tests ofF(S), we can define for any speciessi a Boolean alge-
bra, which is in fact an observable corresponding to experimental procedures for
measuring the number of particles of the speciessi . It is Ni = { ∨̂αi

k
c(αi

k); k ∈ N},
whereαi

k = (k1, . . . , ki−1, k, ki+1, . . . , kn). It is obvious thatN1, . . . , Nn are mu-
tually compatible Boolean algebras.From the physical point of view this means
that in our theory the number of particles from each species may be determined
separately. It is also clear that the composition of any state may be determined by
measuring simultaneously the number of particles of all species. When the theory,
which describes the species from S is not orthogonal it is not possible to define
observables for the number of particles of different species. Nevertheless, it is
justified to talk about tests, which measure the composition of states in particles,
corresponding to measurement procedures whose results may be interpreted as-
suming that particles in discussion are present in the system. It is important to
observe that the impossibility to define observables for the number of particles in
theories, which are not orthogonal is in accord to the fact that in such theories the
particles are not sharply defined.

3. FOCK THEORIES AND TIME EVOLUTIONS

In this section we intend to discuss some problems concerning the possibil-
ity of time evolutions to predict change of particles described by different Fock
theories. We will have in view only conservative evolutions, i.e. evolutions having
a Hamiltonian. The notion of Hamiltonian in the context of theories will defined
below.

Definition 3.3. Let V = (Vt ) be an evolution in the theoryL . We say thata ∈ L
is invariant underV and writeV(a) = a if Vt (a) = a for all t ∈ R. If G ⊆ L is a
subset ofL, we write (a, G)C if (a, g)C for all g ∈ G.

It is easy to verify that the set of all invariant underV elements ofL, which will
be denoted byLv is an orthomodular sublattice ofL. To prove this it is sufficient
to apply the properties of automorphisms.

Definition 3.4. It is said that the evolutionV has a Hamiltonian if there exists
a Boolean algebraH ⊆ L having the property (EH ):V(a) = a⇔ (a, H )C. Such
an evolution is called conservative if it is also a one-parameter group.
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It is obvious that the set of all Boolean algebras having the property (EH) may
be empty or may have more than one element. The following simple proposition
gives us the possibility to define a Hamiltonian for a given evolution when the just
mentioned set is not empty.

Proposition 3.3. If the evolutionV has at least one Boolean algebra with the
property (EH), then there exists a greatest Boolean algebra with this property. It
will be called the Hamiltonian ofV.

Proof: Let H and H ′ be two Boolean algebras having the property (EH) with
respect to the evolutionV. If a ∈ H , thenV(a) = a, which means (a, H ′)C. It
results that the elements of the union of all Boolean algebras with the property (EH)
are mutually compatible. Consequently, the orthomodular sublattice generated by
this union is a Boolean algebra, which will be denoted byHv. It remains to show that
Hv has the property (EH). But this fact results immediately since all elements ofHv

are joins and meets of elements of its generating set (Sikorski, 1964).The Boolean
algebra Hv is called Hamiltonian since it is strictly related with a conservative
evolution, offering a criterion for finding invariant observables from the set of all
possible observables of the theory. It is obvious that invariant observables must
correspond to the so-called constants of motion. ¤

It is obvious that for anyV, evolution with Hamiltonian, we haveHv ⊆ Lv.
In general the following statement is true.

Proposition 3.4. Let V be an evolution with Hamiltonian. Then Lv = Hv if and
only if Lv is a Boolean algebra.

Proof: Takea ∈ Lv. Then we have (a, Hv)C and let us denote byBa the Boolean
algebra generated by the set{a} ∩ Hv. We want to prove thatBa has the property
(EH). If an elementb is compatible withBa, then it is also compatible withHv, so
thatb ∈ Lv. Conversely, suppose thatb ∈ Lv. Then, sinceLv is a Boolean algebra,
(a, b)C. We have also (b, Hv)C, so that (b, Ba)C is true. Since the Hamiltonian is
the greatest Boolean algebra with the (EH) property,b is en element ofHv and the
proposition is completely proved. ¤

It is important to observe that, if the lattice of all invariant underV is a Boolean
algebra, it does not result that it has Hamiltonian. That is because from (a, Lv)C
it does not result necessarily thata is invariant underV . In general, it is very
difficult, if not impossible, to establish in this quite general framework criterions
for deciding if an evolution has or not Hamiltonian. Consequently, in the sequel
we will restrict ourselves to those physical theories, which have the property that
any conservative evolution is continuous(see Comments). As is usually done, an
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evolutionV = (Vt ) is said to be continuous if for any statep and for any testa ∈ L
the functiont 7→ p(Vt (a)) is continuous.

We begin now to study time evolutions of Fock theories.

Definition 3.5.

(a) The evolutionV is said to be admissible for the Fock theoryF(S) if
p ∈ Fs(S)→ p ◦ Vt ∈ Fs(S) for all t ∈ R.

(b) If c(α), α ∈ Nn denote the counting tests of the theoryF(S), then for any
speciessi and any statep we define a composition function as follows:
Cip(t) = 6akiα p(Vtc(α)).

(c) The evolutionV is called reactive if at least one of its composition func-
tions is not constant.

We will prove now a very important result concerning particle Fock theories.

Proposition 3.5. Particle Fock theories have not admissible conservative reac-
tive evolutions.

Proof: Let F(S) be a Fock theory whose counting tests and composition func-
tions are denoted as in Definition 5(b). Let us consider an admissible pure state
δu, u ∈ Ä(L) and the corresponding composition functionCi ,δu(t) = 6αkiαδu

(Vt (c(α))) defined with respect to the evolutionV. Suppose that the function
Ci ,δu(t) = C(t) is not constant. Then there are two alternatives:

(1) there existsτ > 0 such that for anyt ′ > τ we can findt ′′ ∈ (τ, t ′) with
the property (C(t ′′) 6= C(τ );

(2) for any τ ≥ 0 there existst ′ > τ such thatC(t ′′) = C(τ ) for all t ′′ ∈
(τ, t ′).

We will show that in both (1) and (2) casesV is not continuous. Since (2) is the
negation of (1) the proposition will be proved. We prove first that if (1) is true, then
V is not continuous. We show first that∀t ′ > τ, ∃ tk ∈ (τ, t ′)δvτ (u) (Vtk (u)) = 0. In-
deed, if this is not true, we would have for allt ∈ (τ, t ′), Vτ (u), Vt (u) ≤ c(α). That
is because the pure states corresponding to the atomsVτ (u), Vt (u) are admissible
in a particle theory, so that if they are not orthogonal, then they are under the same
counting test. But in this case we can write the following sequence of equalities:
δu(Vtc(α)) = δv−1

t (u)(c(α)) = δv−1
τ (u)(c(α)) = δu(Vτc(α)). This means that the

composition functionCi ,δu (t) is constant on the interval [τ, t ′), which contradicts
the hypothesis. It results that we may find a sequence of real numberstk → τ such
that for allk δVtk (u)(Vτ (u)) = 0= δu(V−1

tk (Vτ (u))) and the limit of this sequence is
obviously zero. On the other hand, if the evolution is supposed to be continuous,
then we have obviously limtk→τ δu(V−1

tk (Vτ (u))) = δu(V−1
τ (Vτ (u))) = δu(u) = 1,
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contradiction. It results that the evolution is not continuous. Suppose now that (2)
is true. Then we can observe that there exists a denumerable family of intervals
(0, t1), [t1, t2), . . . , [tn−1, tn), . . .whose union is [0,∞) and such that the compo-
sition function in question is constant on each of them. Since the composition
function is not constant, there existtn−1, tn, Ct,δu(tn−1) 6= Ci ,δu(tn). Then we take
a sequencetk → tnin[tn−1, tn) and repeat practically the proof from the point (1).
The proposition is completely proved. ¤

Proposition 5 has a simple but important consequence.

Proposition 3.6. Any continuous admissible for a particle Fock theory evolution
leaves invariant all counting tests of that theory.

Proof: In Proposition 5 it has been proved in fact that, if there exists composition
function, which is not constant, then the evolution is not continuous. This means
that, if the admissible evolutionV is continuous, then all composition functions
are constant. Let us consider an atomu ≤ c(α) and the composition functions
associated to the pure state defined byu Ci ,δu(t) = 6αkiαδvt(u) (c(α)). Observe that
the functiont 7→ δvt(u) (c(α)) has as only possible values 0 and 1. Consequently, we
may writeCi ,δu(0)= kiα. If Vt (u) is not underc(α), thenCi ,δu(t) = 0. Further, ifu
is not under vacuum, then we may find 1≤ i ≤ n, kiα 6= 0, so that the correspond-
ing composition function is not constant. It results that all counting tests, which
differ from vacuum, are invariant underV. But, in this case the vacuum itself is
invariant. ¤

Before going further, it is useful to point out that to any given Fock theory
we may attach several admissible evolutions. That is because our definition of
admissibility is a weak enough condition. For our purpose this definition is suf-
ficient since our discussion is quite general and it is obvious that any derivation
from some other conditions imposed by specific physical circumstances evolu-
tion must transform the set of admissible states into itself. Remember also that in
what follows only conservative evolutions, i.e. evolutions with Hamiltonian will be
considered.

Let us consider againV an evolution in the theoryL and its Hamiltonian,
which will be denoted for the moment byH . If a 6= 0 is an element ofL, we
introduce the following sets, which will be used below. They areLa = {b ∈ L; b ≤
a}, Ha = {a ∧ h; h ∈ H} andVa, which is the restriction of all elements ofV to
La. We will prove the following proposition.

Proposition 3.7. Given an evolutionV in L and H its Hamiltonian, the following
two assertions are true.
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(a) La is an orthomodular lattice with the order inherited from L.
(b) Ha is the Hamiltonian ofVa in La if and only if(a, H )C.

Proof: (a) The smallest and the greatest elements ofLa are respectively 0 and
a. It is obvious thatb, d ∈ La ⇒ b∧ d, b∨ d ∈ La. Further, ifb ∈ La, then from
the orthomodularity ofL we havea = b∨ (a ∧ b⊥) and it becomes clear that the
orthocomplement ofb in La is b⊥a = a ∧ b⊥. It is then easy to verify that “⊥a”
is orthocomplementation onLa and La is orthomodular. For proving (b), let us
takeb ∈ La, (b, Ha)C. If h ∈ H , then fromh = (a ∧ h) ∨ (a⊥ ∧ h) we get imme-
diately (b, h)C, which impliesVa(b) = V(b) = b. If V(b) = b, then (b, H )C and
since (b, a)C, we get (b, a ∧ h)C for allh ∈ H . It results thatHa has the (EH) prop-
erty, which confirms that it is a Hamiltonian. Conversely, supposeHa is a Hamilto-
nian. ThenV(a ∧ h) = a ∧ h for all h ∈ H . Since we havea = ∨

h∈H
(h ∧ a), one

obtains immediatelyV(a) = a and finally (a, H )C. The proposition is completely
proved. ¤

The HamiltonianHa may be called the reduction toa of the HamiltonianH .
Let us consider nowF(S) a Fock theory andV one of its admissible evolutions.
If all counting testsc(α) are invariant underV, then for anyα there exists the
reductionHα of the Hamiltonian ofV to c(α). If F(S) is a particle theory, then
it is clear that the pair (F(S),V) may be replaced by the set{(Lα, Hα);α ∈ Nn},
where Lα = Lc(α). Each of the pairs of this set represents a theory for a fixed
number of particles from each species with the evolution corresponding to the
Hamiltonian Hα. A pair like (F(S),V), i.e. having its properties will be called
many particle theory. It is not difficult to understand that a many particle the-
ory describes systems of particles, which are stable in some specific conservative
conditions usually considered in concrete form of Hamiltonians. Moreover, one
of the components of a many particle theory being a particle Fock theory, we
know that there does not exist a conservative evolution able to consider change in
time of the composition of systems. It is also important to remember that particle
Fock theories describe sharply defined particles. On the other hand we know from
experimental facts that there exist systems constituted from particles—like atoms
and molecules—whose composition may change in conservative conditions. For
describing processes in conservative conditions occurring in such systems, we
need Fock theories, which might be orthogonal theories with an extended set of
admissible states if compared with particle theories or theories, which are not
orthogonal. The main appearing problem is how the good from physical point of
view theories of these categories may be recognized or eventually constructed.
Probably the most natural hypothesis is to assume that every system of parti-
cles is constituted in fact from stable in those conditions particles, which may
produce composed nonsharply defined particles. The evolution of systems with
composed particles inside will be generated by the evolution of the considered
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stable particles. We end the paragraph with the mathematical transcription of these
considerations.

Let us consider the Fock theoriesF(S) and (φ(E), Vφ) in the physical theories
L respectively3, where (φ(E), Vφ) is a many particle theory. GivenV an evolution
in L, we say that (F(S),V) derives from (φ(E), Vφ) if there existsf : L → 3 an
injective morphism of orthomodular lattices such thatf (V(a)) = Vφ( f (a)). This
definition has a quite clear meaning: E represnts the set of species of stable
particles from which the particles of the species belonging to S are composed. The
evolutionVφ of stable particles is that, which generates the evolution of composed
particles. Usually the evolutions for stable particles may be found taking into
account basic physical considerations and some empirical facts, so that we get
a good criterion for selecting, at least in principle, the evolutions for particles,
which are not sharply defined.

4. COMMENTS

The principal aim of the present work is to discuss the so-called Fock theories,
which are methematical structures we introduced for studying systems containing
particles whose number varies in time. These particles may be structureless or
composed from other particles. All problems are discussed in the framework of
quantum logics, called in our paper physical theories. The mathematical structure
of quantum logic has been chosen since, in our opinion, it has one of the best
physical interpretations if compared with other mathematical structures also called
physical theories.

Two main conclusions emerge from our work. Both of them refer to the
opportunity to consider the general mathematical structure of Fock space. The first
of them is directly related to the possibility offered by Fock spaces to give a precise
mathematical possibility for distinguishing between sharply defined particles and
other particles whose existence is imposed by experimental facts, but they do not
behave always as sharply defined entities. Such a distinction becomes possible in
quite simple terms because Fock theories are thought to describe, each of them,
all systems constituted from different number of particles of an arbitrarily given
set of species. It has been seen in Paragraph 2 that distinction between the two
mentioned types of particles may be done only in terms of compositions in particles
of admissible states. The second conclusion is connected with conservative time
evolutions of Fock theories. The results obtained from a careful enough analysis
of such evolutions are quite interesting. First of all we find out that sharply defined
particles do not change their number in conservative conditions. On the other hand,
the other mentioned type of particles may change their number in conservative
conditions and the most probable cause of this phenomenon is that they are in fact
composed from other particles.
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Finally some technical comments related with the evolutions as mathematical
objects in our work. The fact that they appear as sets of automorphisms results
since their elements must be symmetries of physical theories, (Ivanov, 1995).
We had to show how to prescribe to any conservative evolution a Hamiltonian
defined strictly in the mathematical framework of quantum logics. The definition,
which has been proposed in Paragraph 3 is inspired by two fundamental results
from Hilbert-space theory. They are spectral theorem for self-adjoint and unitary
operators and Stone’s theorem concerning unitary evolutions, (Stone, 1932). We
have to point out that we used the continuity of evolutions only for proving the
important Proposition 5. Unfortunately for the continuity of evolutions we could
not find a satisfactory physical interpretation in terms of quantum logic system
of notions. We only considered the fact that even in the Hilbert space formalism
a sort of continuity for conservative evolutions must be required. On the other
hand our “purely algebraic” definition permits to obtain a series of results, which
confirm that the lattice-theoretical Hamiltonian has some characteristic properties
of the usual Hilbert-space Hamiltonians. In this paper we derived and used only
few lattice-theoretical results, those, which were necessary for our purpose. It
seems that a more extended study concerning conservative evolutions and their
Hamiltonians in this framework could be quite interesting.
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